Closing Tues: $\quad 13.2,13.3$
Closing Thur: 13.4
Exam 1 is Thurs (April 19)
covers 12.1-12.6, 13.1-13.4

Entry Task:

$$
\overrightarrow{\boldsymbol{r}}(t)=\langle 2 \cos (t), 2 \sin (t), 0\rangle
$$

Find $\overrightarrow{\boldsymbol{T}}(t), \overrightarrow{\boldsymbol{N}}(t)$, and K.

13.1-13.4 Curves in 3D

Given $\overrightarrow{\boldsymbol{r}}(t)=\langle x(t), y(t), z(t)\rangle$
$\overrightarrow{\boldsymbol{r}}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle$ tangent vector
$s(t)=\int_{0}^{t}\left|\overrightarrow{\boldsymbol{r}}^{\prime}(u)\right| d u=$ distance
$\overrightarrow{\boldsymbol{T}}(t)=\frac{\overrightarrow{\boldsymbol{r}}^{\prime}(t)}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|}=$ unit tangent
$\overrightarrow{\boldsymbol{N}}(t)=\frac{\overrightarrow{\boldsymbol{T}}^{\prime}(t)}{\left|\overrightarrow{\boldsymbol{T}}^{\prime}(t)\right|}=$ principal unit normal
$K=\left|\frac{d \stackrel{\rightharpoonup}{\boldsymbol{T}}}{d s}\right|=\frac{\left|\overrightarrow{\boldsymbol{r}}^{\prime} \times \overrightarrow{\boldsymbol{r}}^{\prime \prime}\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|^{3}}=$ curvature

Note:
\boldsymbol{T} and \boldsymbol{T}^{\prime} are always orthogonal.
Proof:
Since $\boldsymbol{T} \cdot \boldsymbol{T}=|\boldsymbol{T}|^{2}=1$, we can differentiate both sides to get

$$
\boldsymbol{T}^{\prime} \cdot \boldsymbol{T}+\boldsymbol{T} \cdot \boldsymbol{T}^{\prime}=0 .
$$

So $2 \boldsymbol{T} \cdot \boldsymbol{T}^{\prime}=0$.

Thus, $\boldsymbol{T} \cdot \boldsymbol{T}^{\prime}=0$. (QED)

Curvature

The curvature at a point, K, is a measure of how quickly a curve is changing direction at that point.

$$
K=\frac{\text { change in direction }}{\text { change in distance }}
$$

Roughly, how much does your direction change if you move a small amount ("one inch") along the curve?

$$
\mathrm{K} \approx\left|\frac{\overrightarrow{\boldsymbol{T}_{2}}-\overrightarrow{\boldsymbol{T}_{\mathbf{1}}}}{\text { "one inch" }}\right|=\left|\frac{\Delta \vec{T}}{\Delta s}\right|
$$

So we define:

$$
K=\left|\frac{d \overrightarrow{\boldsymbol{T}}}{d s}\right|
$$

Computation Notes
(see my 13.3 Notes/book for the proof) $1^{\text {st }}$ shortcut:

$$
K(t)=\left|\frac{d \overrightarrow{\boldsymbol{T}}}{d s}\right|=\left|\frac{d \overrightarrow{\boldsymbol{T}} / d t}{d s / d t}\right|=\frac{\left|\overrightarrow{\boldsymbol{T}}^{\prime}(t)\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|}
$$

$2^{\text {nd }}$ shortcut

$$
K(t)=\left|\frac{d \overrightarrow{\boldsymbol{T}}}{d s}\right|=\frac{\left|\overrightarrow{\boldsymbol{T}}^{\prime}(t)\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|}=\frac{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t) \times \overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|^{3}}
$$

Aside:
The radius of curvature is the radius of the circle that would best fit the curve at the given point.
radius of curvature $=\frac{1}{K}$

2D Curvature

To find curvature for, $y=f(x)$,
We form the 3D vector function

$$
\boldsymbol{r}(x)=\langle x, f(x), 0\rangle
$$

so $\boldsymbol{r}^{\prime}(x)=\left\langle 1, f^{\prime}(x), 0\right\rangle \quad$ and

$$
\boldsymbol{r}^{\prime \prime}(x)=\left\langle 0, f^{\prime \prime}(x), 0\right\rangle
$$

$$
\left|\boldsymbol{r}^{\prime}(x)\right|=\sqrt{1+\left(f^{\prime}(x)\right)^{2}}
$$

$$
\boldsymbol{r}^{\prime} \times \boldsymbol{r}^{\prime \prime}=\left\langle 0,0, f^{\prime \prime}(x)\right\rangle
$$

Thus,

$$
K(x)=\frac{\left|\boldsymbol{r}^{\prime} \times \boldsymbol{r}^{\prime \prime}\right|}{\left|\boldsymbol{r}^{\prime}\right|^{3}}=\frac{\left|f^{\prime \prime}(x)\right|}{\left(1+\left(f^{\prime}(x)\right)^{2}\right)^{3 / 2}}
$$

Example: $f(t)=x^{2}$
At what point (x, y, z) is the curvature maximum?
13.4 Position, Velocity, Acceleration If $\boldsymbol{t}=\boldsymbol{t i m e}$ and position is given by

$$
\boldsymbol{r}(t)=\langle x(t), y(t), z(t)\rangle
$$

then

$$
\begin{aligned}
\boldsymbol{r}^{\prime}(t)= & \lim _{h \rightarrow 0} \frac{\boldsymbol{r}(t+h)-\boldsymbol{r}(t)}{h} \\
& =\frac{\text { change in position }}{\text { change in time }} \\
& =\text { velocity }=\boldsymbol{v}(t) \\
\left|\boldsymbol{r}^{\prime}(\boldsymbol{t})\right|= & \frac{\text { change in dist }}{\text { change in time }}=\text { speed } \\
\boldsymbol{r}^{\prime \prime}(t)= & \lim _{h \rightarrow 0} \frac{\boldsymbol{r}^{\prime}(t+h)-\boldsymbol{r}^{\prime}(t)}{h} \\
& =\frac{\text { change in velocity }}{\text { change in time }} \\
& =\text { acceleration }=\boldsymbol{a}(t)
\end{aligned}
$$

HUGE application:

Modeling ANY motion problem.

Newton's $2^{\text {nd }}$ Law of Motion states
Force $=$ mass \cdot acceleration

$$
\begin{gathered}
\boldsymbol{F}=m \cdot \boldsymbol{a}, \text { so } \\
\boldsymbol{a}=\frac{1}{m} \cdot \boldsymbol{F}
\end{gathered}
$$

HW Example:
An object of mass 10 kg is being acted on by the force $\boldsymbol{F}=\left\langle 130 t, 10 e^{t}, 10 e^{-t}\right\rangle$.
You are given

$$
\boldsymbol{v}(0)=\langle 0,0,1\rangle \text { and } \boldsymbol{r}(0)=\langle 0,1,1\rangle
$$

Find the position function.

If $\boldsymbol{F}=\langle 0,0,0\rangle$, then all the forces 'balance out' and the object has no acceleration. (Velocity will remain constant)

If $\boldsymbol{F} \neq\langle 0,0,0\rangle$, then acceleration will occur, and we integrate (or solve a differential equation) to find velocity and position.

That is how we can model ALL motion problems!

Measuring and describing acceleration

Recall: $\operatorname{comp}_{\boldsymbol{b}}(\boldsymbol{a})=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\boldsymbol{b}}=$ length.

We define the tangential and normal components of acceleration by:
$a_{T}=\operatorname{comp}_{\boldsymbol{T}}(\boldsymbol{a})=\boldsymbol{a} \cdot \boldsymbol{T}=$ tangential
$a_{N}=\operatorname{comp}_{\boldsymbol{N}}(\boldsymbol{a})=\boldsymbol{a} \cdot \boldsymbol{N}=$ normal

For computing use,

$$
a_{T}=\frac{\stackrel{\rightharpoonup}{\boldsymbol{r}}^{\prime} \cdot \overrightarrow{\boldsymbol{r}}^{\prime \prime}}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|} \text { and } a_{T}=\frac{\left|\overrightarrow{\boldsymbol{r}}^{\prime} \times \overrightarrow{\boldsymbol{r}}^{\prime \prime}\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|}
$$

For interpreting use,
$a_{T}=v^{\prime}=\frac{d}{d t}\left|r^{\prime}(t)\right|=$ "deriv. of speed"
$a_{N}=k v^{2}=$ curvature $\cdot(\text { speed })^{2}$

Example:

$$
\overrightarrow{\boldsymbol{r}}(t)=<\cos (t), \sin (t), t\rangle
$$

Find the tangential and normal components of acceleration.

Deriving interpretations:
Note that: $\boldsymbol{a}=a_{T} \boldsymbol{T}+a_{N} \boldsymbol{N}$
Let $v(t)=|\overrightarrow{\boldsymbol{v}}(t)|=$ speed.

1. $\overrightarrow{\boldsymbol{T}}(t)=\frac{\overrightarrow{\vec{r}}^{\prime}(t)}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|}=\frac{\overrightarrow{\boldsymbol{v}}(t)}{v(t)}$ implies $\overrightarrow{\boldsymbol{v}}=v \overrightarrow{\boldsymbol{T}}$.
2. $\kappa(t)=\frac{\left|\overrightarrow{\boldsymbol{T}}^{\prime}(t)\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|}=\frac{\left|\overrightarrow{\boldsymbol{T}}^{\prime}\right|}{v(t)}$ implies $\left|\overrightarrow{\boldsymbol{T}}^{\prime}\right|=\kappa v$.
3. $\stackrel{\rightharpoonup}{\boldsymbol{N}}(t)=\frac{\overline{\boldsymbol{T}}^{\prime}(t)}{\left|\overline{\boldsymbol{T}}^{\prime}(t)\right|}=\frac{\overline{\boldsymbol{T}}^{\prime}}{\kappa v}$ implies $\overrightarrow{\boldsymbol{T}}^{\prime}=\kappa v \overrightarrow{\boldsymbol{N}}$.

Differentiating the first fact above gives

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{a}}=\overrightarrow{\boldsymbol{v}}^{\prime}=v^{\prime} \overrightarrow{\boldsymbol{T}}+v \overrightarrow{\boldsymbol{T}}^{\prime}, \text { so } \\
& \overrightarrow{\boldsymbol{a}}=\overrightarrow{\boldsymbol{v}}^{\prime}=v^{\prime} \overrightarrow{\boldsymbol{T}}+k v^{2} \overrightarrow{\boldsymbol{N}} .
\end{aligned}
$$

Conclusion:
$a_{T}=v^{\prime}=\frac{d}{d t}\left|r^{\prime}(t)\right|=$ "deriv. of speed"
$a_{N}=k v^{2}=$ curvature $\cdot(\text { speed })^{2}$

